Mechanisms of verapamil inhibition of action potential firing in rat intracardiac ganglion neurons.

نویسندگان

  • R C Hogg
  • C Trequattrini
  • L Catacuzzeno
  • A Petris
  • F Franciolini
  • D J Adams
چکیده

The effects of verapamil and related phenylalkylamines on neuronal excitability were investigated in isolated neurons of rat intracardiac ganglia using whole-cell perforated patch-clamp recording. Verapamil (>/=10 microM) inhibits tonic firing observed in response to depolarizing current pulses at 22 degrees C. The inhibition of discharge activity is not due to block of voltage-dependent Ca2+ channels because firing is not affected by 100 microM Cd2+. The K+ channel inhibitors charybdotoxin (100 nM), 4-aminopyridine (0.5 mM), apamin (30-100 nM), and tetraethylammonium ions (1 mM) also have no effect on firing behavior at 22 degrees C. Verapamil does not antagonize the acetylcholine-induced inhibition of the muscarine-sensitive K+ current (M-current) in rat intracardiac neurons. Verapamil inhibits the delayed outwardly rectifying K+ current with an IC50 value of 11 microM, which is approximately 7-fold more potent than its inhibition of high voltage-activated Ca2+ channel currents. These data suggest that verapamil inhibits tonic firing in rat intracardiac neurons primarily via inhibition of delayed outwardly rectifying K+ current. Verapamil inhibition of action potential firing in intracardiac neurons may contribute, in part, to verapamil-induced tachycardia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

Electrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail

Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...

متن کامل

sigma Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons.

The sigma receptors have been implicated in the regulation of the cardiovascular system, and sigma-1 receptor transcripts have been found in parasympathetic intracardiac neurons. However, the cellular function of sigma-1 receptors in these cells remains to be determined. Effects of sigma receptor activation on voltage-activated K(+) channels and action potential firing were studied in isolated ...

متن کامل

Minocycline did not prevent the neurotoxic effects of amyloid β on intrinsic electrophysiological properties of hippocampal CA1 pyramidal neurons in a rat model of Alzheimer’s disease

Introduction: Although aging is the most important risk factor for Alzheimer's disease (AD), there is evidence indicating that neuroinflammation may contribute to the development and progression of the disease. Several studies indicated that minocycline may exert neuroprotective effects in rodent models of neurodegenerative diseases. Nevertheless, there are also other studies implying that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 289 3  شماره 

صفحات  -

تاریخ انتشار 1999